Mixing Momentum and Value: A Winning Combination?

///, Momentum Investing Research/Mixing Momentum and Value: A Winning Combination?

Mixing Momentum and Value: A Winning Combination?

By |2017-08-18T17:00:46+00:00September 23rd, 2014|Value Investing Research, Momentum Investing Research|

Combining Value and Momentum


This paper considers several popular portfolio implementation techniques that maximize exposure to value and/or momentum stocks while taking into account transaction costs. Our analysis of long-only strategies illustrates how a strategy that simultaneously incorporates both value and momentum outperforms a strategy that combines pure-play value and momentum portfolios that are formed independently. There are two advantages of the simultaneous strategy. The first is the reduction in transaction costs; the second is better utilization of unfavorable value and momentum information in a long-only portfolio. Our analysis also addresses the optimal way to combine the faster-moving momentum signal with the slower-moving value signal.

Alpha Highlight:

Numerous academic papers examine pure-play value and momentum portfolios. Sheridan Titman–one of the authors on this paper–has a well-established and respected group of papers on momentum. Why he decided to join in on this paper is a bit puzzling, given the paper’s weak robustness analysis and “practitioner-focused” bent. Nonetheless, the paper asks an interesting question: “Why not combine value and momentum in one portfolio and “kill two birds with one stone?” This paper is not the first to consider this issue. Asness, Moskowitz and Pedersen (2012) shows that even 50/50 equal combination of value and momentum can significantly outperform pure-play strategies. Asness (1997) and Daniel & Titman (1999) show that momentum and value are negatively correlated. Stivers and Sun (2009) use Return Dispersion (RD) as a proxy for volatility and thus generate a timing signal to combine these two strategies dynamically. The point of all this research is clear: momentum is cool; value is cool; combining the 2 is awesome. The authors of this paper use two simple methods to combine value and momentum and find the following benefits relative to “pure-play” value or momentum strategies:

  • Reductions in transaction costs
  • Higher Sharpe Ratios

The authors highlight that, “Momentum is a relatively fast moving characteristic, since returns from year to year are relatively independent, while value is a relatively slow-moving characteristic, since it is based on levels rather than changes in market values.” Thus, combining the fast and slow characteristics can better utilize the unfavorable information embedded in the characteristics. The two simple combination strategies are:

  1. Strategy 1 — Average V/M strategy: Ranks firms by Momentum and Value separately, and then compute the average rank (Rj), to calculate the stock’s Average V/M score.
    • The Avg. V/M score has exposure to both signals equally. The disadvantage of this simple strategy is that one signal has the ability to out-weigh the other. Thus, the changes in momentum scores have a large influence on trading, which lead to higher trading costs.
  2. Strategy 2 — Value|m>X: Rather than selecting stocks based on a combined signal, after initial positions are chosen, trades are initiated only when both value and momentum signals are sufficiently favorable.
    • This strategy has greater value exposure and less momentum exposure.

Which of the two combination strategies works better? Below is a main result table of the paper.  The table shows the performance of 5 different strategies from 2000 to 2013 (we focus on 4): Value only, Momentum only, Average V/M strategy, and Value|m>50% strategy.

2014-08-09 17_43_21-Combining Value and Momentum .pdf - Adobe Reader

The results are hypothetical results and are NOT an indicator of future results and do NOT represent returns that any investor actually attained. Indexes are unmanaged, do not reflect management or trading fees, and one cannot invest directly in an index. Additional information regarding the construction of these results is available upon request.

Key Findings: 

  1. From the table above, both the two combination strategies work well. They generate higher returns, lower standard deviations, and higher Sharpe Ratios than the Value or Momentum strategy only.
  2. The Avg. V/M strategy performs relatively better (highest Sharpe ratios for both large and small capitalization stocks) in this paper.

These two methods are easy to design and apply. But the data period in this paper is short, thus making the results not very informative or unique.

  • The views and opinions expressed herein are those of the author and do not necessarily reflect the views of Alpha Architect, its affiliates or its employees. Our full disclosures are available here. Definitions of common statistics used in our analysis are available here (towards the bottom).
  • Join thousands of other readers and subscribe to our blog.
  • This site provides NO information on our value ETFs or our momentum ETFs. Please refer to this site.

About the Author:

Wesley Gray, PhD
Wes Gray has published multiple academic papers and four books, including Quantitative Value (Wiley, 2012), DIY Financial Advisor (Wiley, 2015), and Quantitative Momentum (Wiley, 2016).After serving as a Captain in the United States Marine Corps, Dr. Gray earned an MBA and a PhD in finance from the University of Chicago where he studied under Nobel Prize Winner Eugene Fama. Next, Wes took an academic job in his wife’s hometown of Philadelphia and worked as a finance professor at Drexel University. Dr. Gray’s interest in bridging the research gap between academia and industry led him to found Alpha Architect, an asset management firm that delivers affordable active exposures for tax-sensitive investors. He is a contributor to multiple industry publications and regularly speaks to professional investor groups across the country. Wes currently resides in the suburbs of Philadelphia with his wife and three children.
Yes No
This website uses cookies and third party services. Settings Ok


We use “cookies” on this site. A cookie is a piece of data stored on a site visitor’s hard drive to help us improve your access to our site and identify repeat visitors to our site. For instance, when we use a cookie to identify you, you would not have to log in a password more than once, thereby saving time while on our site. Cookies can also enable us to track and target the interests of our users to enhance the experience on our site. Usage of a cookie is in no way linked to any personally identifiable information on our site. Some of our business partners may use cookies on our site (for example, advertisers). However, we have no access to or control over these cookies.

Embedded Content

Articles on this Site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.