//, Basilico and Johnsen/Academic Research Insight: VOLATILITY WISDOM OF SOCIAL MEDIA CROWDS


By |2017-10-02T07:51:42+00:00October 2nd, 2017|Research Insights, Basilico and Johnsen|
  • Authors:  Ahmet K. Karagozoglu and Frank J. Fabozzi
  • Publication:  Journal of Portfolio Management, Winter 2017                          (version here)

What are the research questions?

Using raw tweets from Twitter and StockTwits (“Trader Mood Data” from PsychSignal) a minute-by-minute social media sentiment signal is constructed for numerous financial instruments and used to evaluate various trading strategies.

1.   Can information gathered from social media tweets be used to construct a realistic volatility signal that can be used to predict future market volatility without relying on complex estimation methodologies?

2.  Can trading strategies using a signal developed from the volatility of social media sentiment outperform after fees and costs?  What is the investment impact of this type of “sentiment”?

What are the Academic Insights?

1.  YES.  The authors backtest a social anomaly score (SAS) constructed from tweets as a proxy for crowd-based sentiment regarding the stocks included in the S&P 500.  The trading strategy relies on the hypothesis that the larger the crowd, the more accurate will be the volatility measures that are estimated from that crowd.

Two SAS scores are calculated:  SAS-w consists of the weighted sentiment expressed for constituents of the S&P 500 Index and the SAS-spy is based on sentiment on the SPY.  If the SAS-w exceeds the SAS-spy on any day, the strategy is to go long the VIX-linked ETP and short the VIX-linked ETP if the reverse occurs.  In other words,  if the weighted sentiment of the crowd for volatility exceeds that for the market proxy ETF, then market volatility will increase when we rely on the wisdom of the crowd.  If the reverse is true, and crowd-based volatility is less than that of the market ETF, then market volatility will be expected to decrease. A medium and long-term version of the SAS scores are constructed and used to forecast daily and weekly market volatility. The VIX-linked ETPs includes the VIXY-the ProShares VIX short-term futures ETF; the VIXM-the ProShares VIX mid-term futures ETF; the VXX, the iPath S&P500 VIX short-term futures ETN; and the VXZ-the iPath S&P 500 VIX mid-term futures ETN.

2.  YES.  Five different strategies (of aggregation of tweets, such as mean, median) were used to calculate each score using long and medium-term SAS scores from the database produced roughly consistent results in terms of net profitability, risk-adjusted returns and risk measures.  This was especially true for the aggregation method used in Strategy 1.

Focusing on long-term SAS scores, all five aggregation strategies outperformed the buy-and-hold for the VIXY and for the VXX (strategy 1), after fees and costs.  Strategy 1 for the VIXY and VXX exceeded 100% for the period, with Sharpe ratios of 1.45 and 1.39, respectively.  Aggregation strategies 2-5 produced returns in excess of 90% for the VIXY and VXX compared to 40.6% for the buy-and-hold.

The data covered the period September 2012 to April 2016. The authors point out one caveat:  during this period the VIX was declining, possibly affecting their results.  However, they also point out that the trading signals produced not only equal distributions between long and short positions, but both produced positive profits.  There is no reason to believe that the same results would not occur when the VIX is in an upward trend.

Another caveat:  The results may be affected by datamining biases.  There were forty-four simulations, with five aggregation strategies covered, across both long and medium term SAS scores.  Even if the returns were not tested for robustness say on an out-of-sample basis, a reasonable haircut of even 25% would result in attractive returns.

Why does it matter? 

This article presents additional evidence on the practicality of obtaining effective measures of investor sentiment from social media.  A superior set of data from social media when compared to other published studies on the topic, is utilized.  While the database is similar to that used in other studies, it is unique in that it offers a much broader range of coverage.  SAS scores were constructed in a simple, easily calculated method (aggregated via averages, medians, for example) and then converted into trading signals.  The trading strategy was intuitively based on the idea that data obtained from larger social crowds would be more accurate in predicting future market volatility.  The trading strategy was implemented successfully with easily accessible and very liquid exchange-traded vehicles linked to the VIX.  Finally, returns were calculated net of fees and commissions.

What is the most important chart from the paper?

The results are hypothetical results and are NOT an indicator of future results and do NOT represent returns that any investor actually attained. Indexes are unmanaged, do not reflect management or trading fees, and one cannot invest directly in an index.


  • The views and opinions expressed herein are those of the author and do not necessarily reflect the views of Alpha Architect, its affiliates or its employees. Our full disclosures are available here. Definitions of common statistics used in our analysis are available here (towards the bottom).
  • Join thousands of other readers and subscribe to our blog.
  • This site provides NO information on our value ETFs or our momentum ETFs. Please refer to this site.

About the Author:

Tommi Johnsen, PhD
Dr. Tommi Johnsen, until retirement in 2017, was the Director of the Reiman School of Finance and a tenured faculty at the Daniels College of Business at the University of Denver.She has worked extensively as a consultant and investment advisor in the areas of quantitative methods and portfolio construction. She taught at the graduate and undergraduate level and published research in several areas including: capital markets, portfolio management and performance analysis, financial applications of econemetrics and the analysis of equity securities. Her publications have appeared in numerous peer-reviewed journals.
Yes No
This website uses cookies and third party services. Settings Ok


We use “cookies” on this site. A cookie is a piece of data stored on a site visitor’s hard drive to help us improve your access to our site and identify repeat visitors to our site. For instance, when we use a cookie to identify you, you would not have to log in a password more than once, thereby saving time while on our site. Cookies can also enable us to track and target the interests of our users to enhance the experience on our site. Usage of a cookie is in no way linked to any personally identifiable information on our site. Some of our business partners may use cookies on our site (for example, advertisers). However, we have no access to or control over these cookies.

Embedded Content

Articles on this Site may include embedded content (e.g. videos, images, articles, etc.). Embedded content from other websites behaves in the exact same way as if the visitor has visited the other website.These websites may collect data about you, use cookies, embed additional third-party tracking, and monitor your interaction with that embedded content, including tracking your interaction with the embedded content if you have an account and are logged in to that website.