Improving Commodity Strategies with Momentum and Term Structure

/Improving Commodity Strategies with Momentum and Term Structure

Improving Commodity Strategies with Momentum and Term Structure

By | 2017-08-18T17:03:10+00:00 February 5th, 2013|Research Insights|3 Comments

Tactical allocation in commodity futures markets: Combining momentum and term structure signals

  • Ana-Maria Fuertes, Joelle Miffre, and Georgios Rallis
  • A version of the paper can be found here.
  • Want a summary of academic papers with alpha? Check out our free Academic Alpha Database!


This paper examines the combined role of momentum and term structure signals for the design of profitable trading strategies in commodity futures markets. With significant annualized alphas of 10.14% and 12.66% respectively, the momentum and term structure strategies appear profitable when implemented individually. With an abnormal return of 21.02%, a novel double-sort strategy that exploits both momentum and term structure signals clearly outperforms the single-sort strategies. This double-sort strategy can additionally be utilized as a portfolio diversification tool. Interestingly, the abnormal performance of the double-sort portfolios cannot be explained by a lack of liquidity or data mining and is robust to transaction costs and to different specifications of the risk-return trade-off.

Data Sources:

Datastream and Bloomberg from 1979 to 2007.

Alpha Highlight:

Fuertes, Miffre and Rallis, 2010 - Google Chrome_2013-02-01_08-48-23

[Click to enlarge] The results are hypothetical results and are NOT an indicator of future results and do NOT represent returns that any investor actually attained. Indexes are unmanaged, do not reflect management or trading fees, and one cannot invest directly in an index. Additional information regarding the construction of these results is available upon request.

Strategy Summary:

  1. First compute all commodity futures’ roll returns (using nearest-to-maturity and second-nearest-to-maturity contracts)
  2. Next compute all commodity futures’ momentum.  The paper uses past 1-month, 3-month, or 12-month returns to compute momentum.
  3. Sort roll returns into 3 groups, with highest 1/3 roll returns being “high”, and lowest 1/3 roll returns being “low.”
  4. Then sort the commodities in the “high” group into “winners” and “losers” based on past momentum.  Do the same for the “low” group.
  5. Go long the “high-winners” and short the “low-losers.”  All portfolios are EW and are rebalanced every month
  6. Table 6 shows that this strategy yields around 18-23% alpha per year.


  • Paper finds that rebalancing at the end of the month or on the 15th of the month does not significantly affect returns.
  • Paper also sorts on momentum first, then term structure and finds similar results, which are also in Table 6.
  • After accounting for trading costs in the paper, the returns are still between 18% and 22% (Table 6).
  • Table 7 also highlights that this strategy is negatively correlated with the SP500, and has a small positive correlation to bond returns.

  • The views and opinions expressed herein are those of the author and do not necessarily reflect the views of Alpha Architect, its affiliates or its employees. Our full disclosures are available here. Definitions of common statistics used in our analysis are available here (towards the bottom).
  • Join thousands of other readers and subscribe to our blog.
  • This site provides NO information on our value ETFs or our momentum ETFs. Please refer to this site.

Print Friendly, PDF & Email

About the Author:

Wes Gray
After serving as a Captain in the United States Marine Corps, Dr. Gray earned a PhD, and worked as a finance professor at Drexel University. Dr. Gray’s interest in bridging the research gap between academia and industry led him to found Alpha Architect, an asset management that delivers affordable active exposures for tax-sensitive investors. Dr. Gray has published four books and a number of academic articles. Wes is a regular contributor to multiple industry outlets, to include the following: Wall Street Journal, Forbes,, and the CFA Institute. Dr. Gray earned an MBA and a PhD in finance from the University of Chicago and graduated magna cum laude with a BS from The Wharton School of the University of Pennsylvania.
  • Pingback: Improving Commodity Strategies with Momentum and Term Structure « European Edges()

  • GM

    I google “momentum commodity investing” and sure enough it takes me to my favourite blog! 🙂
    How can one get access to a strategy such as the one described above? What is the difference between this and a managed futures (MF) strategy? Are MF agnostic to asset class whereas the above is commodities only?

  • Jack Vogel, PhD

    USCI is an ETF that is long-only commodities, and ranks on backwardation and momentum. Info can be found here:

    Managed Futures strategies can also include fixed income, currencies, and equity future contracts, and generally go both long and short.