Academic Research Insight

Measuring a Firms’ Environmental Impact

To manage climate risks, investors need reliable climate exposure metrics. This need is particularly acute for climate risks along the supply chain, where such risks are recognized as important, but difficult to measure. We propose an intuitive metric that quantifies the exposure a company has to customers, or suppliers, who may in turn be exposed to climate risks. We show that such risks are not captured by traditional climate data. For example, a company may seem green on a standalone basis, but may still have meaningful, and potentially material, climate risk exposure if it has customers, or suppliers, whose activities could be impaired by transition or physical climate risks. Our metric is related to scope 3 emissions and may help capture economic activities such as emissions offshoring. However, while scope 3 focuses on products sold to customers and supplies sourced from suppliers, our metric captures the strength of economic linkages and the overall climate exposure of a firm’s customers and suppliers. Importantly, the data necessary to compute our measure is broadly accessible and is arguably of a higher quality than the currently available scope 3 data. As such, our metric’s intuitive definition and transparency may be particularly appealing for investors.

Individual Investor Behavior: What Does the Research Say?

Many market commentators, financial advisors, and professionals are quick to point that that individuals are terrible investors. Of course, it's not exactly clear that professionals are much better than individuals, but it is certainly true that most investors should simply buy low-cost index funds (or factor funds!) and gets their hands out of the cook jar. What's nice about this paper is that the assertions that individuals are poor investors -- and exactly why they fail to do well -- are backed by peer-reviewed research. One can leverage these insights to help investors find solutions that will solve their problems and put them in a better position to be successful.

Short Sellers Are Informed Investors

Using multiple short sale measures, we examine the predictive power of short sales for future stock returns in 38 countries from July 2006 to December 2014. We find that the days-to-cover ratio and the utilization ratio measures have the most robust predictive power for future stock returns in the global capital market. Our results display significant cross-country and cross-firm differences in the predictive power of alternative short sale measures. The predictive power of shorts is stronger in countries with non-prohibitive short sale regulations and for stocks with relatively low liquidity, high shorting fees, and low price efficiency.

Can We Measure Inflation with Twitter

Drawing on Italian tweets, we employ textual data and machine learning techniques to build new real-time measures of consumers’ inflation expectations. First, we select keywords to identify tweets related to prices and expectations thereof. Second, we build a set of daily measures of inflation expectations around the selected tweets, combining the Latent Dirichlet Allocation (LDA) with a dictionary-based approach, using manually labeled bi-grams and tri-grams. Finally, we show that Twitter-based indicators are highly correlated with both monthly survey-based and daily market-based inflation expectations. Our new indicators anticipate consumers’ expectations, proving to be a good real-time proxy, and provide additional information beyond market-based expectations, professional forecasts, and realized inflation. The results suggest that Twitter can be a new timely source for eliciting beliefs.

Momentum Everywhere, Including in Factors

Managed portfolios that exploit positive first-order autocorrelation in monthly excess returns of equity factor portfolios produce large alphas and gains in Sharpe ratios. We document this finding for factor portfolios formed on the broad market, size, value, momentum, investment, prof- itability, and volatility. The value-added induced by factor management via short-term momentum is a robust empirical phenomenon that survives transaction costs and carries over to multi-factor portfolios. The novel strategy established in this work compares favorably to well-known timing strategies that employ e.g. factor volatility or factor valuation. For the majority of factors, our strategies appear successful especially in recessions and times of crisis.

An Investor’s Guide to Crypto

We provide practical insights for investors seeking exposure to the growing cryptocurrency space. Today, crypto is much more than just bitcoin, which historically dominated the space but accounted for just a 21% share of total crypto trading volume in 2021. We discuss a wide variety of tokens, highlighting both their functionality and their investment properties. We critically compare popular valuation methods. We contrast buy-and-hold investing with more active styles. We only deem return data from 2017 representative, but the use of intraday data boosts statistical power. Underlying crypto performance has been notoriously volatile, but volatility-targeting methods are effective at controlling risk, and trend-following strategies have performed well. Crypto assets display a low correlation with traditional risky assets in normal times, but the correlation also rises in the left tail of these risky assets. Finally, we detail important custody and regulatory considerations for institutional investors.

Does Intangible-Adjusted Book-to-Market Work?

The book-to-market ratio has been widely used to explain the cross-sectional variation in stock returns, but the explanatory power is weaker in recent decades than in the 1970s. I argue that the deterioration is related to the growth of intangible assets unrecorded on balance sheets. An intangible-adjusted ratio, capitalizing prior expenditures to develop intangible assets internally and excluding goodwill, outperforms the original ratio significantly. The average annual return on the intangible-adjusted highminus-low (iHML) portfolio is 5.9% from July 1976 to December 2017 and 6.2% from July 1997 to December 2017, vs. 3.9% and 3.6% for an equivalent HML portfolio

Calculating Supply Chain Climate Exposure

To manage climate risks, investors need reliable climate exposure metrics. This need is particularly acute for climate risks along the supply chain, where such risks are recognized as important, but difficult to measure. We propose an intuitive metric that quantifies the exposure a company has to customers, or suppliers, who may in turn be exposed to climate risks. We show that such risks are not captured by traditional climate data. For example, a company may seem green on a standalone basis, but may still have meaningful, and potentially material, climate risk exposure if it has customers, or suppliers, whose activities could be impaired by transition or physical climate risks. Our metric is related to scope 3 emissions and may help capture economic activities such as emissions offshoring. However, while scope 3 focuses on products sold to customers and supplies sourced from suppliers, our metric captures the strength of economic linkages and the overall climate exposure of a firm’s customers and suppliers. Importantly, the data necessary to compute our measure is broadly accessible and is arguably of a higher quality than the currently available scope 3 data. As such, our metric’s intuitive definition and transparency may be particularly appealing for investors.

Can Machine Learning Identify Future Outperforming Active Equity Funds?

We show, using machine learning, that fund characteristics can consistently differentiate high from low-performing mutual funds, as well as identify funds with net-of-fees abnormal returns. Fund momentum and fund flow are the most important predictors of future risk-adjusted fund performance, while characteristics of the stocks that funds hold are not predictive. Returns of predictive long-short portfolios are higher following a period of high sentiment or a good state of the macro-economy. Our estimation with neural networks enables us to uncover novel and substantial interaction effects between sentiment and both fund flow and fund momentum.

Using Institutional Investor’s Trading Data in Factors

The authors investigate how the interaction between entries and exits of informed institutional investors and market anomaly signals affects strategy performance. The long legs of anomalies earn more positive alphas following entries, whereas the short legs earn more negative alphas following exits. The enhanced anomaly-based strategies of buying stocks in the long legs of anomalies with entries and shorting stocks in the short legs with exits outperform the original anomalies, with an increase of 19–54 bps per month in the Fama–French five-factor alpha. The entries and exits of institutional investors capture informed trading and earnings surprises, thereby enhancing the anomalies.

Arbitrage and the Trading Costs of ETFs

This article examines ETF creations and redemptions around price deviations and finds that the expected arbitrage trades are relatively rare in a broad sample of equity index ETFs. In the absence of these trades, price deviations persist much longer. Creation and redemption activity appears to be constrained when exchange conditions would lead to a costlier arbitrage trade, and the size of the price deviations mainly impact the likelihood rather than the amount of trading. The authors also find some evidence that creations and redemptions are less likely to trade on price deviations when they would be required to trade the underlying stocks against broad market movements. Their results suggest that several factors may discourage the built-in ETF arbitrage mechanism and that investors may receive poorer trade execution in these conditions as a result.

Factors Investing in Cryptocurrency

We find that three factors—cryptocurrency market, size, and momentum—capture the cross-sectional expected cryptocurrency returns. We consider a comprehensive list of price- and market-related return predictors in the stock market and construct their cryptocurrency counterparts. Ten cryptocurrency characteristics form successful long-short strategies that generate sizable and statistically significant excess returns, and we show that all of these strategies are accounted for by the cryptocurrency three-factor model. Lastly, we examine potential underlying mechanisms of the cryptocurrency size and momentum effects.

Do Connections Pay Off in the Bitcoin Market?

This paper identifies the bitcoin investor network and studies the relationship between connections and returns. Using transaction data recorded in the bitcoin blockchain from 2015 to 2020, we reach three conclusions. First, connectedness is not strongly correlated with higher returns in the first four years. However, the correlation becomes strong and significant in 2019 and Second, returns also differ among those connected addresses. By dividing the connected addresses into ten decile groups based on their centrality, we find that the top 20% most connected addresses earn higher returns than their peers during most of our sample period. Third, eigenvector centrality is more related to higher returns than degree centrality for the top 20% most-connected addresses, implying that the quality of connections may matter more than quantity among those highly connected addresses.

Short-term Momentum

We document a striking pattern in U.S. and international stock returns: double sorting on the previous month’s return and share turnover reveals significant short-term reversal among low-turnover stocks, whereas high-turnover stocks exhibit short-term momentum. Short-term momentum is as profitable and as persistent as conventional price momentum. It survives transaction costs and is strongest among the largest, most liquid, and most extensively covered stocks. Our results are difficult to reconcile with models imposing strict rationality but are suggestive of an explanation based on some traders underappreciating the information conveyed by prices.

Options Hedging & Leveraged ETFs in Market Swings

Earlier this year, GameStop stock rose like crazy in only a few hours with the effects of broker-dealer options hedging spurred by retail investor buying pressure. And from February to March 2020, options trading activity was also pointed to as a contributor to stock swings in the Covid-19 selloff. The market dropped 30% and then recovered quickly over the following weeks. It has been documented that the need for market makers to hedge their positions with options (given rapid changes in stock prices) can contribute to market and stock price swings. However, might there be other factors also at play in these types of stock and market fluctuations? 

Is There a Gender Gap in Kickstarter Campaigns?

This study focuses on the launch phase of the leading reward-based crowdfunding market—Kickstarter. It documents the behavior of male and female entrepreneurs in raising early stage capital. We find that women share as entrepreneurs in the platform (34.7%) does not equal to their share in the overall population, and they are concentrated in stereotyped sectors, both as entrepreneurs and as backers. We also find that women do not set lower funding goals than men, they enjoy higher rates of success than men, even after controlling for project categories and funding goals, and that backers of both genders have a tendency to fund entrepreneurs of their own gender. Our survey of Kickstarter backers finds evidence of taste-based discrimination by male backers.

Strategies to Mitigate Tail Risk

Investors care about more than just returns. They also care about risk. Thus, prudent investors include consideration of strategies that can provide at least some protection against adverse events that lead to left tail risk (portfolios crashing). The cost of that protection (the impact on expected returns) must play an important role in deciding whether to include them. For example, buying at-the-money puts, a strategy that eliminates downside risk, should have returns no better than the risk-free rate of return, making that a highly expensive strategy.

How Race Influences Asset Allocation Decisions

Of the $69.1 trillion global financial assets under management across mutual funds, hedge funds, real estate, and private equity, fewer than 1.3% are managed by women and people of color. Why is this powerful, elite industry so racially homogenous? We conducted an online experiment with actual asset allocators to determine whether there are biases in their evaluations of funds led by people of color, and, if so, how these biases manifest. We asked asset allocators to rate venture capital funds based on their evaluation of a 1-page summary of the fund’s performance history, in which we manipulated the race of the managing partner (White or Black) and the strength of the fund’s credentials (stronger or weaker). Asset allocators favored the White-led, racially homogenous team when credentials were stronger, but the Black-led, racially diverse team when credentials were weaker. Moreover, asset allocators’ judgments of the team’s competence were more strongly correlated with predictions about future performance (e.g., money raised) for racially homogenous teams than for racially diverse teams. Despite the apparent preference for racially diverse teams at weaker performance levels, asset allocators did not express a high likelihood of investing in these teams. These results suggest first that underrepresentation of people of color in the realm of investing is not only a pipeline problem, and second, that funds led by people of color might paradoxically face the most barriers to advancement after they have established themselves as strong performers.

Trend Following: Timing Fast and Slow Trends

A large body of evidence demonstrates that momentum, including time-series momentum (trend following), has improved portfolio efficiency. Research has found that there are a few ways to improve on simple trend-following strategies. Techniques that have been found to improve Sharpe ratios and reduce tail risk include volatility scaling and combining fast and slow signals as well as combining long-term reversals. These have been incorporated by many fund managers into investment strategies. Cheng, Kostyuchyk, Lee, Liu and Ma provided evidence that machine learning could be used to further improve results. With that said, a word of caution on the use of machine learning is warranted. The powerful tools and the easy access to data now available to researchers create the risk that machine learning studies will find correlations that have no causation and thus the findings could be nothing more than a result of torturing the data. To minimize that risk, it is important that findings not only have rational risk- or behavioral-based explanations for believing the patterns identified will persist in the future, but they also should be robust to many tests. In this case, investors could feel more confident in the results if their findings were robust to international equities and other asset classes (such as bonds, commodities and currencies).

Form 3 and Form 4 Alpha: Focus on What Insiders Don’t Trade

Some individuals, e.g., those holding multiple directorships, are insiders at multiple firms. When they execute an insider trade at one firm, they may reveal information about the value of all—both the traded insider position and not-traded insider position(s)—the securities held in their “insider portfolio.” We find that insider “not-sold” stocks outperform “not-bought” stocks. Implementable trading strategies that buy not-sold stocks following the disclosure of a sale earn alphas up to 4.8% per year after trading costs. The results suggest that even insider sales that are motivated by liquidity and diversification needs can provide value-relevant information about insider holdings.

Go to Top