Gender Pay Gap Transparency
In this article, we examine what the research says about gender pay gap transparency. We look at the research questions and academic insights with an eye toward why it matters.
In this article, we examine what the research says about gender pay gap transparency. We look at the research questions and academic insights with an eye toward why it matters.
How did Momentum investing perform after the previous two valuation peaks?
This article answers this question.
Key finding: Momentum investing also performed well following episodes when value stocks were cheap. Of course, momentum portfolios did not perform nearly as well as value portfolios, but they did still beat the generic market.
We dig into the details below.
We examine the short-duration premium using pre-scheduled economic, monetary policy, and earnings announcements. We provide high-frequency evidence that duration premia associated with revisions of economic growth and interest rate expectations are consistent with asset pricing models but cannot explain the short-duration premium. Instead, we show that the trading activity of sentiment-driven investors raises prices of long-duration stocks, which lowers their expected returns, and results in the short-duration premium. Long-duration stocks have the lowest institutional ownership, exhibit the largest forecast errors at earnings announcements, and show the highest mispricing scores.
We find that factor momentum concentrates in factors that explain more of the cross section of returns and that it is not incidental to individual stock momentum: momentum-neutral factors display more momentum.
An equal-weighted portfolio of Best Brands (BBs) in the U.S. earns an excess return of 25 to 35 bps per month during the period 2000-2020. This result is remarkably robust across various factor models and therefore is not driven by exposure to common (risk) factors. The excess returns of the BB portfolio are not due to firm characteristics, industry composition, or small-cap stocks. We provide evidence suggesting that expensing investments in brands (instead of capitalizing them) and the tendency to underestimate the effect of brand name on generating future earnings are two mechanisms contributing to the excess returns.
Standardized Performance Factor Performance Factor Exposures Factor Premiums Factor Attribution Factor Data Downloads
Non-standard errors capture uncertainty due to differences in research design choices. We establish substantial variation in the design choices made by researchers when constructing asset pricing factors. By purposely data mining over two thousand different versions of each factor, we find that Sharpe ratios exhibit substantial variation within a factor due to different construction choices, which results in sizable non-standard errors and allows for p-hacking. We provide simple suggestions that reduce the average non-standard error by 70%. Our study has important implications for model selection exercises.
Relative sentiment is an indicator that measures the positions, flows, and attitudes of institutional investors compared to those of individual investors–where institutions typically consist of large asset managers, insurance companies, pension funds, and endowments. In some instances, however–depending on the dataset and the asset class under consideration–institutions might also include hedge funds, CTAs, and other large speculators.
Short-term alpha signals are generally dismissed in traditional asset pricing models, primarily due to market friction concerns. However, this paper demonstrates that investors can obtain a significant net alpha by combining signals applied on a liquid global universe with simple buy/sell trading rules. The composite model consists of short-term reversal, short-term momentum, short-term analyst revisions, short-term risk, and monthly seasonality signals. The resulting alpha is present across regions, translates into long-only applications, is robust to incorporating implementation lags of several days, and is uncorrelated to traditional Fama-French factors.
Using a unique dataset of individual transactions-level data for a universe of U.S. consumer facing stocks, we examine the information content of consumer credit and debit card spending in explaining future stock returns. Our analysis shows that consumer spending data positively predict various measures of a company’s future earnings surprises up to three quarters in the future. This predictive power remains strong in both large- and small-cap universes of consumer discretionary firms in our sample and is robust to the type of transactions data considered (credit card, debit card, or both), although the relationship is stronger in the small-cap universe where informational asymmetries are more pronounced. Based on this empirical observation we build a simple long-short strategy that takes long/short positions in the top/bottom tercile of stocks ranked on our real-time sales signal. The strategy generates statistically and economically significant returns of 16% per annum net of transaction costs and after controlling for the common sources of systematic factor returns. A simple optimization exercise to form (tangency) mean-variance efficient portfolios of factors leads to an optimal factor allocation that assigns almost 50% weight to our long-short portfolio. Our results suggest that consumer transaction level data can serve as a more accurate and persistent signal of a firm’s growth potential and future returns.
Standardized Performance Factor Performance Factor Exposures Factor Premiums Factor Attribution Factor Data Downloads
How information affects asset prices is of fundamental importance. Public information flows through news, while private information flows through trading. We study how stock prices respond to these two information flows in the context of two major asset pricing anomalies— short-term reversal and momentum. Firms release news primarily during non-trading hours, which is reflected in overnight returns. While investors trade primarily intraday, which is reflected in intraday returns. Using a novel dataset that spans almost a century, we find that portfolios formed on past intraday returns display strong reversal and momentum. In contrast, portfolios formed on past overnight returns display no reversal or momentum. These results are consistent with underreaction theories of momentum, where investors underreact to the information conveyed by the trades of other investors.
Across markets, momentum is one of the most prominent anomalies and leads to high risk-adjusted returns. On the downside, momentum exhibits huge tail risk as there are short but persistent periods of highly negative returns. Crashes occur in rebounding bear markets, when momentum displays negative betas and momentum volatility is high. Based on ex-ante calculations of these risk measures we construct a crash indicator that effectively isolates momentum crashes from momentum bull markets. An implementable trading strategy that combines both systematic and momentum-specific risk more than doubles the Sharpe ratio of original momentum and outperforms existing risk management strategies over the 1928–2020 period, in 5 and 10-year sub-samples, and an international momentum portfolio.
I find that returns are predictably negative for several months after the onset of recessions, becoming high only thereafter. I identify business cycle turning points by estimating a state-space model using macroeconomic data. Conditioning on the business cycle further reveals that returns exhibit momentum in recessions, whereas in expansions they display the mild reversals expected from discount rate changes. A strategy exploiting this pattern produces positive alphas. Using analyst forecast data, I show that my findings are consistent with investors' slow reaction to recessions. When expected returns are negative, analysts are too optimistic and their downward expectation revisions are exceptionally high.
What are the consequences of widespread ESG-based portfolio exclusions on the expected returns of firms subject to exclusion? We consider two possible theoretical explanations. 1) Short-term price pressure around the exclusions leading to correction of mispricing going forward. 2) Long term changes in required returns. We use the exclusions of Norwegian Government Pension Fund Global (GPFG -`The Oil Fund') to investigate. GPFG is the world's largest SWF, and its ESG decisions are used as a model for many institutional investors. We construct various portfolios representing the GPFG exclusions. We find that these portfolios have significant superior performance (alpha) relative to a Fama-French five factor model. The sheer magnitude of these excess returns (5\% in annual terms) leads us to conclude that short-term price pressure can not be the only explanation for our results, the excluded firms expected returns must be higher in the longer term.
We examine Sentix sentiment indices for use in tactical asset allocation. In particular, we construct monthly relative sentiment factors for the U.S., Europe, Japan, and Asia ex-Japan by taking the difference in 6-month economic expectations between each region's institutional and individual investors. These factors (along with one-month forward equity returns) then serve as inputs to a wide array of machine learning algorithms. Employing combinatorial cross-validation and adjusting for data snooping, we find relative sentiment factors have robust and significant predictive power in all four regions; that they surpass both standalone sentiment and time-series momentum in terms of informational content; and that they demonstrate the ability to identify the subsequent best- and worst-performing global equity markets from along a cross-section. The results are consistent with previous findings on relative sentiment, discovered using unrelated datasets.
Drawing on Italian tweets, we employ textual data and machine learning techniques to build new real-time measures of consumers’ inflation expectations. First, we select keywords to identify tweets related to prices and expectations thereof. Second, we build a set of daily measures of inflation expectations around the selected tweets, combining the Latent Dirichlet Allocation (LDA) with a dictionary-based approach, using manually labeled bi-grams and tri-grams. Finally, we show that Twitter-based indicators are highly correlated with both monthly survey-based and daily market-based inflation expectations. Our new indicators anticipate consumers’ expectations, proving to be a good real-time proxy, and provide additional information beyond market-based expectations, professional forecasts, and realized inflation. The results suggest that Twitter can be a new timely source for eliciting beliefs.
Managed portfolios that exploit positive first-order autocorrelation in monthly excess returns of equity factor portfolios produce large alphas and gains in Sharpe ratios. We document this finding for factor portfolios formed on the broad market, size, value, momentum, investment, prof- itability, and volatility. The value-added induced by factor management via short-term momentum is a robust empirical phenomenon that survives transaction costs and carries over to multi-factor portfolios. The novel strategy established in this work compares favorably to well-known timing strategies that employ e.g. factor volatility or factor valuation. For the majority of factors, our strategies appear successful especially in recessions and times of crisis.
Standardized Performance Factor Performance Factor Exposures Factor Premiums Factor Attribution Factor Data Downloads
The book-to-market ratio has been widely used to explain the cross-sectional variation in stock returns, but the explanatory power is weaker in recent decades than in the 1970s. I argue that the deterioration is related to the growth of intangible assets unrecorded on balance sheets. An intangible-adjusted ratio, capitalizing prior expenditures to develop intangible assets internally and excluding goodwill, outperforms the original ratio significantly. The average annual return on the intangible-adjusted highminus-low (iHML) portfolio is 5.9% from July 1976 to December 2017 and 6.2% from July 1997 to December 2017, vs. 3.9% and 3.6% for an equivalent HML portfolio
© Copyright 2023 alpha architect | All Rights Reserved | Home | Terms of Use | Privacy Policy | Disclosures | Subscribe | Contact Us